Stable Image Colorization Algorithm Based on the Mixed L0/L1 Norm Minimization
نویسندگان
چکیده
This paper proposes a colorization algorithm based on the mixed L0/L1 norm minimization. Authors have already proposed a colorization algorithm, however, it requires appropriate parameters, and its performance highly depends on these parameters. This paper introduces some heuristic and modifies the algorithm in order to reduce the dependence of parameters. Numerical examples show that the proposed algorithm colorizes the grayscale image efficiently.
منابع مشابه
Mixed l0/l1 Norm Minimization Approach to Super-Resolution
This deals with the problem of recovering a high-resolution digital image from one low resolution digital image and proposes a super-resolution algorithm based on the mixed l0/l1 norm minimization. Introducing some assumptions and focusing the uniformity and the gradation of the image, this paper formulates the colorization problem as a mixed l0/l1 norm minimization and proposes the algorithm b...
متن کاملColorization Based Compression Using Mean Shift Segmentation and Sparse Recovery Algorithm
In this paper, the colorization-based coding problem has been solved using smooth L0 (SL0) and L1 norm (OMP) minimization sparse recovery algorithms. In colorization-based coding method at the encoder, only few representative pixels (RP) for the chrominance values are sent along with luminance part of image to the decoder where the chrominance values for all the pixels are reconstructed by colo...
متن کاملA Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI
INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...
متن کاملA Hybrid L0-L1 Minimization Algorithm for Compressed Sensing MRI
INTRODUCTION Both L1 minimization [1] and homotopic L0 minimization [2] techniques have shown success in compressed-sensing MRI reconstruction using reduced k-space data. L1 minimization algorithm is known to usually shrink the magnitude of reconstructions especially for larger coefficients [1, 3] and non-convex penalty used in homotopic L0 minimization is advocated to replace L1 penalty [3]. H...
متن کاملL0-Norm and Total Variation for Wavelet Inpainting
In this paper, we suggest an algorithm to recover an image whose wavelet coefficients are partially lost. We propose a wavelet inpainting model by using L0-norm and the total variation (TV) minimization. Traditionally, L0-norm is replaced by L1-norm or L2-norm due to numerical difficulties. We use an alternating minimization technique to overcome these difficulties. In order to improve the nume...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013